Targeted disruption of the olfactory mucosa-specific Cyp2g1 gene: impact on acetaminophen toxicity in the lateral nasal gland, and tissue-selective effects on Cyp2a5 expression.
نویسندگان
چکیده
CYP2G1 is a cytochrome P450 monooxygenase expressed uniquely in the olfactory mucosa (OM). We have generated Cyp2g1-null mice to identify the roles of CYP2G1 in the biology and the tissue-specific toxicity of xenobiotic compounds in the nose. Homozygous Cyp2g1-null mice are viable and fertile; they show no evidence of embryonic lethality, morphological abnormality, or developmental deficits; and they seem to have normal olfactory ability. However, OM microsomes from Cyp2g1-null mice were found to have significantly lower activities than microsomes from wild-type mice in the metabolism of testosterone and progesterone (approximately 60% decrease) and in the metabolic activation of coumarin (>70% decrease). Unexpectedly, a significant reduction in the expression of the Cyp2a5 gene was found in the liver, the lateral nasal gland (LNG), and, to a lesser extent, the kidney of adult Cyp2g1-null mice. The loss of CYP2G1 expression, and the associated decrease in the hepatic expression of CYP2A5, did not decrease systemic clearance, extent of hepatotoxicity, or OM toxicity of acetaminophen (AP). However, the LNG was protected from AP (at 400 mg/kg) toxicity in the Cyp2g1-null mice. Paradoxically, the LNG did not have detectable CYP2G1, and the decrease in LNG CYP2A5 expression in the Cyp2g1-null mice was not accompanied by decreases in microsomal AP metabolism. We hypothesize that OM CYP2G1 (through a paracrine pathway) or LNG CYP2A5 may indirectly influence resistance of the LNG to chemical toxicity, possibly by regulating gene expression in the LNG through steroid hormones or other endogenous P450 substrates and their metabolites.
منابع مشابه
A novel defensive mechanism against acetaminophen toxicity in the mouse lateral nasal gland: role of CYP2A5-mediated regulation of testosterone homeostasis and salivary androgen-binding protein expression.
To identify novel factors or mechanisms that are important for the resistance of tissues to chemical toxicity, we have determined the mechanisms underlying the previously observed increases in resistance to acetaminophen (APAP) toxicity in the lateral nasal gland (LNG) of the male Cyp2g1-null/Cyp2a5-low mouse. Initial studies established that Cyp2a5-null mice, but not a newly generated strain o...
متن کاملIn vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa.
Acetaminophen overdose causes toxicity in liver and extrahepatic tissues. Although it is well established that cytochrome P450 enzymes play a critical role in the metabolic activation of acetaminophen, it is not yet clear whether acetaminophen toxicity in extrahepatic tissues is a consequence of hepatic biotransformation. The aim of this study was to determine whether extrahepatic acetaminophen...
متن کاملPurification and characterization of heterologously expressed mouse CYP2A5 and CYP2G1: role in metabolic activation of acetaminophen and 2,6-dichlorobenzonitrile in mouse olfactory mucosal microsomes.
The metabolic activation of two known olfactory mucosal (OM) toxicants, acetaminophen (AP) and 2,6-dichlorobenzonitrile (DCBN), was examined with mouse liver and OM microsomes and purified, heterologously expressed mouse CYP2A5 and CYP2G1. In reconstituted systems, both isoforms were active in metabolizing DCBN and AP to metabolites that formed protein adducts. The formation of DCBN- or AP-prot...
متن کاملCYP2A5-mediated activation and early ultrastructural changes in the olfactory mucosa: studies on 2,6-dichlorophenyl methylsulfone.
2,6-Dichlorophenyl methylsulfone (2,6-diClPh-MeSO2) is a potent olfactory toxicant reported to induce endoplasmic reticulum (ER) stress, caspase activation, and extensive cell death in mice. The aim of the present study was to examine cytochrome P450 (P450)-dependent bioactivation, nonprotein sulfhydryl (NP-SH) levels, and early ultrastructural changes in mouse olfactory mucosa following an i.p...
متن کاملBiotransformation of coumarin by rodent and human cytochromes P-450: metabolic basis of tissue-selective toxicity in olfactory mucosa of rats and mice.
Coumarin was previously found to cause tissue-selective toxicity in the olfactory mucosa (OM) of rats and mice, with rats being the more sensitive species. The aim of this study was to explore the role of target tissue biotransformation in OM-selective toxicity and the metabolic basis of the species differences in coumarin toxicity. At least six coumarin metabolites were detected in OM microsom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 308 2 شماره
صفحات -
تاریخ انتشار 2004